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We present the first lattice QCD calculation of the leading-order momentum-independent parity
violating coupling between pions and nucleons, h1

πNN . The calculation performs measurements on
a single ensemble of dynamical anisotropic clover gauge configurations, with a spatial extent of
L ∼ 2.5 fm, a spatial lattice spacing of as ∼ 0.123 fm, and a pion mass of mπ ∼ 389 MeV. We find
a contribution from the ‘connected’ diagrams of h1,con

πNN = (1.099 ± 0.505+0.058
−0.064) × 10−7, consistent

with current experimental bounds and previous model-dependent theoretical predictions.

Quantum chromodynamics (QCD) is the fundamental
field theory that describes the dynamics and interactions
of quarks and gluons, and the combination of QCD and
electroweak interactions underlies all of nuclear physics
from the single particle hadron spectrum through the
interaction of complex nuclei. However, a quantitative
understanding of nuclear observables directly from QCD
has proved elusive due to the nonperturbative nature of
the theory at low energies. Lattice QCD remains the sole
avenue for theoretical explorations of observables in the
nonperturbative regime with precise quantifiable errors.
This is particularly meaningful for processes which are
poorly understood experimentally, such as the neutral
current parity violating (PV) weak interaction between
quarks. Indeed, this interaction stands apart as the least
understood portion of the standard model. In this Letter
we report on the first calculation directly from QCD of
the leading-order momentum-independent parity violat-
ing coupling between pions and nucleons, h1

πNN , using
nf = 2 + 1 lattice QCD calculations on configurations
with a pion mass of mπ ∼ 389 MeV.

Parity violating interactions have been known since
the late 1950s[1–3], and their discovery radically changed
perceptions of the role of fundamental symmetries in par-
ticle physics. While these interactions can be studied
in flavor-changing decays, the effects of the PV neutral-
current in such decays are tiny as the tree-level cou-
pling between quarks and the Z boson are flavor diago-
nal and radiative corrections are suppressed by the GIM
mechanism[4, 5]. This leaves PV flavor conserving in-
teractions as the only laboratories for studying the weak
neutral current, with the nucleon-nucleon (NN) PV in-
teraction as the only accessible case. Isolation of the
hadronic weak neutral current occurs in the ∆I = 1 NN
channel, and this component is thought to be dominated
by long-range pion exchange[4, 6].

At hadronic scales the weak interaction can be quali-
tatively considered as a pointlike four-quark interaction
which gives rise to a pion that mediates long-range in-
teractions. Experiments to uncover this effect are tech-
nically demanding however, as the ratio of the weak
to strong contributions to the NN interaction is ap-
proximately 10−7. In the decades since the discovery
of parity violation, a heroic series of experiments (see
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FIG. 1: Model estimates[7–14] (solid line and triangles at
top) and experimental results (dashed lines with labels and
1σ error ellipse in gray, from Refs. [4, 15, 16] and references
therein) for h1

πNN versus the dominant isoscalar PV coupling
combination, along with the results of this work (solid vertical
line and error band).

Refs. [4, 15, 16] and references therein) have sought to
uncover the value of h1

πNN , defined as

LπNN
PV = h1

πNN

(
p̄π+n− n̄π−p

)
(1)

with a proton (p), neutron (n), and pion (π). The most
precise of these experiments are plotted with dashed lines
in Fig. 1, with the combined 1σ error ellipse shown in
grey. The coupling h1

πNN dominates the long range par-
ity violating NN potential as it is not suppressed by pow-
ers of momentum. Although lacking precision, exper-
imental results thus far suggest that while the isoscalar
PV interaction is of natural size, the isovector interaction
h1
πNN is suppressed. Early results from the most recent

experimental collaboration to examine nuclear parity vi-
olation, the NPDGamma collaboration[17], have thus far
not provided any significant constraint on h1

πNN . How-
ever, the experiment is currently being reinstalled at the
Spallation Neutron Source at Oak Ridge National Labo-
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ratory and should very soon be able to reach its design
precision.
Because QCD is nonperturbative, how the PV four-

quark interactions build up into the composite interac-
tions of the hadrons is not analytically known. Several
model-dependent attempts have been made to calculate
h1
πNN in such a way that the nonperturbative effects are

included. The earliest of these used the quark model
in combination with several symmetry considerations to
make the first robust theoretical predictions of h1

πNN [14]
(the DDH result). Despite a tremendous amount of
effort, the remaining systematic uncertainties from the
nonperturbative sector of QCD prevented Ref. [14] from
specifying a result, and instead the outcome of the cal-
culation was presented as a ‘best guess’ and an accom-
panying range of values. Subsequent calculations using
the quark model[9, 10], chiral solitons[7, 8], and QCD
sum rules[11–13] have obtained greatly varying values of
h1
πNN , but all have remained within the original DDH

range. The DDH range and the results of each model
calculation are shown at the top of Fig. 1.
The lattice QCD calculation presented here uses one

ensemble of nf = 2 + 1 anisotropic clover gauge config-
urations with a pion mass of mπ ∼ 389 MeV, spatial
lattice spacing of as ∼ 0.123(1) fm, and an anisotropy of
ξ = 3.50(3)[18, 19]. The configurations have a total ex-
tent of 203×256, leading to a spatial dimension of L ∼ 2.5
fm and mπL ∼ 4.9. Three-point correlation functions of
the form

Cij
A→B(t, t

′) = ⟨0|OB,j(t)O∆I=1
PV (t′)O†

A,i(0)|0⟩ (2)

are constructed, with t the sink timeslice and t′ the opera-
tor insertion timeslice. On,k is an interpolating operator
with the quantum numbers of state n and source/sink
smearing of type k. Sandwiched between these opera-
tors is the four-quark operator for the ∆I = 1 PV in-
teraction. Two-point correlation functions of the form
Cij

n (t) = ⟨0|On,j(t)O†
n,i(0)|0⟩ are also calculated. The

interpolating operator used is the standard three quark
operator ϵabcuα

a (d
β
b [Cγ5]βδu

δ
c), with color indices a, b,

c and spin indices α, β, δ. This operator has the
quantum numbers of the proton. A similar operator,
ϵabc[γ5]αωu

ω
a (d

β
b [Cγ5]βδu

δ
c), creates a state with the quan-

tum numbers of the neutron-pion (nπ) in an S-wave[20–
23] (expected to be the nπ system rather than the S11

negative parity proton at this pion mass). Using a
three-quark interpolating operator to create the nπ state
greatly simplifies the quark contractions necessary for the
3-point function. Furthermore, the simplified operator
removes the need to calculate expensive quark-loop con-
tributions at the sink, which would arise from separate n
and π interpolating operators.
The four-quark ∆I = 1 PV operator can be con-

structed directly from the standard electroweak interac-
tion Lagrangian[5] at the scale of the weak gauge bosons
by integrating out the Z boson (the contributions from

the exchange of the W± bosons are neglected as they are
suppressed by sin2(θC) ≈ 0.05, where θC is the Cabibbo
angle). One can then use continuum one-loop QCD per-
turbation theory to run the operator coefficients to the
scale of the hadronic interactions (Λχ = 1 GeV) integrat-
ing out the heavier b- and c-quarks along the way[6, 24].
During the course of this running mixing between opera-
tors with the same quantum numbers will occur, leaving
a total of 8 operators at the hadronic scale. There is
no mixing with lower-dimension operators as the ∆I = 1
PV operator also conserves CP, precluding quark bilinear
operators from contributing with divergent powers of the
lattice spacing. The full four-quark ∆I = 1 PV operator
at the hadronic scale can then be expressed as

O∆I=1
PV = −GF sin

2(θW )

3
√
2

4∑
i=1

∫
d3x (Ciθ

q
i + Siθ

s
i ) (3)

where GF = 1.16637×10−5 GeV−2 is the Fermi coupling
and sin2(θW ) = 0.231 is the weak mixing angle[25]. The
four-quark operators that contain only light (u and d)
quarks are θqi , while the θsi contain s-quarks along with
light quarks. The coefficients Ci and Si of these operators
and the specific operator forms used for θi in this work
can be found in Ref. [26].

Performing the quark contractions in the three-point
correlation function of Eq. 2 using the above operators,
one arrives at three possible diagrams for the quark prop-
agators. The first type connects two of the quarks from
both the source and sink operators to the weak oper-
ator, with the third quark going directly between the
source and sink. This type is drawn in Fig. 2(a) and
is called the ‘connected’ case. The second, ‘quark-loop’
type of Fig. 2(b) contains a quark loop at the weak op-
erator insertion while connecting only one quark each
from the source and sink to the weak operator. The final
type contains a weak operator where all four quarks are
contracted with each other, leading to an entirely ‘dis-
connected’ contribution. However, in the isospin limit
(mu = md, which is the case here) the contributions from
this type of diagram will sum to zero, saving considerable
computational expense. Because the interpolating oper-
ators consist entirely of light quarks, the operators θqi will
have contributions to both the connected and quark-loop
diagrams, while the operators θsi will contribute only to
the quark-loop diagrams as the s-quarks will be required
to be contained in the quark loop itself.

Typically 3-point correlation functions are computed
on the lattice using an efficient technique known as se-
quential inversion, whereby the quark propagators cal-
culated from the source to the sink are contracted into
a new ‘source’ which is inverted to obtain the propaga-
tor backwards to the operator insertion. However, this
technique fails for this calculation both in the case of the
connected diagrams (due to the need for two propagators
between the operator and the sink) and in the case of the
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(a) (b)

FIG. 2: The (a) connected and (b) quark-loop diagrams that
contract the parity-violating operator with the interpolating
operators for the source and sink. The filled circle and square
represent the three-quark interpolating operators used at the
source and the sink respectively, with one positive party and
the other negative parity.

quark loop diagrams (as the quark-loop would remain to
be calculated). Instead, this calculation performs two
separate quark propagator inversions, one at the source
and one at the weak operator insertion. This method un-
fortunately restricts the measurements to a single spatial
site on the operator timeslice (all spatial sites are sam-
pled over the course of the calculation), but allows for
maximum flexibility and computational efficiency (as the
propagators may be used for both the connected and the
quark-loop diagrams, and for any of the weak operators).
With this method, the timeslice on which the weak oper-
ator is placed (t′) must be large enough that the excited
states of the source operator are exponentially small, and
for this calculation t′ = 24.
To extract the desired matrix element, a ratio of 3-

point and 2-point functions must be formed such that in
the limit of large t′ and t− t′ contamination from excited
states dies off and the ground state overlap factors are
canceled, allowing the ratio to plateau to the value of the
matrix element. This ratio is given by

Rij
A→B =

Cij
A→B(t, t

′)

Cjj
B (t)

(
Cii

A(t− t′)Cjj
B (t)Cjj

B (t′)

Cjj
B (t− t′)Cii

A(t)C
ii
A(t

′)

) 1
2

(4)

where the smearing used in the 2-point functions must
match that used for the corresponding state in the 3-
point function in order to have the correct cancelation
of overlap factors. However, as discussed in Ref. [26] the
differing energy levels of the proton and the nπ states
will cause an insertion of energy by the weak operator to
occur, modifying Eq. 1 to

LπNN
PV = h1

πNN

(
p̄π+n− n̄π−p

)
+ hEDt

(
p̄π+n− n̄π−p

)
(5)

with some unknown coefficient hE , making the long-time
behavior of Eq. 4

Rij
p→nπ −−−−−−−→

(t−t′)→∞
h1
πNN +∆E · hE . (6)

To remove the ∆E dependence one observes that the
first term in Eq. 5 is antisymmetric with respect to the
interchange of the proton and nπ initial and final states,
while the second term is symmetric. Thus the energy
injection term can be eliminated with an antisymmetric

combination of Eq. 4, leading to a plateau region given
by

Hij =
1

2

(
Rij

p→nπ −Rij
nπ→p

)
−−−−−−−→
(t−t′)→∞

h1
πNN . (7)

A total of 100,871 measurements of each of the smear-
ing combinations of Hij are performed, where i, j can
be either point- or shell-smearing. These measurements
are then blocked on each configuration and bootstrapped.
One can enhance the plateau region for Eq. 7 by taking
appropriately normalized linear combinations of the dif-
ferent smearing combinations, using the matrix-prony[27]
method on the bootstrapped ensemble to determine the
optimal linear combination. This is done for both the
connected and the quark-loop contractions. In the case
of the quark-loop diagrams the signal-to-noise ratio re-
mains far too small to recover any reliable result, and
indeed it is not possible to even define a plateau region.
It is expected that improvements in both contraction al-
gorithms and overall calculation runtime will be needed
to overcome this difficulty and reliably extract the quark-
loop contribution. For the connected contributions the
analysis returns the data shown in Fig. 3, revealing not
only a well defined plateau region, but a robust non-zero
contribution to h1

πNN .
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FIG. 3: Lattice results for the contribution of connected quark
diagrams to h1

πNN , as a function of Euclidean lattice time
from the operator insertion. The solid line is the fully corre-
lated fit value over the plateau region with the grey rectangle
the statistical plus fit window systematic uncertainty.

In Fig. 3, a fully correlated χ2 minimizing fit to a con-
stant is performed over the plateau region, with addi-
tional systematic error due to the choice of plateau region
determined by shifting the ends of the region ±2 times-
lices. The quoted systematic error is then one-half of the
maximum minus the minimum of these shifted fits. The
fit result and statistical plus systematic error are shown
in Fig. 3 with the solid line and grey band. The contri-
bution of the connected diagrams to h1

πNN is then found
to be

h1,con
πNN = (1.099± 0.505+0.058

−0.064)× 10−7 (8)
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where the first and second uncertainties are statistical
and systematic, respectively. Comparing the error bars
on the points with the error band from the fit, one ob-
serves a high degree of correlation between successive
timeslices, which results from the lattice anisotropy. The
fit result is plotted in Fig. 1 as the vertical line and error
band, and it is consistent with both experimental bounds
and previous model calculations.
Renormalization of the bare PV operators at the lattice

scale and subsequent matching to a perturbative scheme
is not performed for this first calculation, though results
from other four-quark calculations (at similar pion mass
and lattice spacing) indicate that this should affect the
result by perhaps 10%[28], significantly below the quoted
statistical error. With the clover action, lattice spacing
errors are expected to be O(a2sΛ

2
QCD) ∼ 2%, also well

below statistical uncertainty. Because sequential propa-
gators are not used, one largely eliminates excited state
contamination by choosing an operator insertion time
well into the 2-point correlation function ground state
plateaus (though this necessarily increases the statistical
uncertainty by pushing the sink operator further into the
baryon noise). Finally, one expects from chiral perturba-
tion theory the next-to-leading-order contribution to be
a pion loop originating at the operator insertion, giving
an expected finite volume error of O((mπf

2
πL

3)−1) ∼ 7%
(fπ = 132 MeV is the pion decay constant). While future
calculations must also address these sources of systematic
error, the uncertainties in this work remain dominated by
statistical uncertainty and the absence of a signal from
quark-loop contributions.
In conclusion, we have performed the first calculation

of the quantity h1
πNN directly from the underlying theory

of QCD. Our calculation was performed on one ensem-
ble of anisotropic clover configurations with a pion mass
of mπ ∼ 389 MeV. Future calculations will need to be
performed at pion masses closer to the physical point,
and with sufficient statistical resolution to extract the
contribution of the quark-loop diagrams (expected to be
on the order of 103 more measurements). While signifi-
cant technical challenges remain in the calculation of the
full matrix element, this first of its kind result clearly
shows that lattice QCD can make a significant contribu-
tion to the theoretical, model-independent, understand-
ing of quantities that are difficult to access experimen-
tally. Our result, while incomplete, shows good agree-
ment with current experimental bounds and paves the
way toward a complete extraction of h1

πNN at a precision
consistent with, or better than, the anticipated results of
the upcoming NPDGamma experiment at Oak Ridge.
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